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if such crystals were used in precision spectroscopy. 
The Darwin-Prins theory, however, may be used to 
correct for this asymmetry in the instrumental window. 
The magnitude of the calculated correction (at 2 =  
0.86 A*) is such that the wavelength of monochromatic 
radiation as measured by a pair of Ge (111) crystals 
would be less than the true value by 17 ppm. The cor- 
rection is approximately the same whether the peak or 
the average of the two half-intensity points is chosen 
as the wavelength criterion. In ordinary X-ray spectro- 
scopy, the width of a spectral line is considerably 
greater than the width of the instrumental window, 
and in this case the appropriate corrections may be 
obtained from the Darwin-Prins theory by a method 
developed by Sauder (1966). 

The authors are indebted to Professor Leon Madan- 
sky of The Johns Hopkins University and Dr Alan J. 
Bearden of the University of California at La Jolla for 
many helpful discussions on the M6ssbauer effect. 
They also wish to thank Professor Robert Pond of 
The Johns Hopkins University for his assistance in 
preliminary metallographic studies on M6ssbauer 
source preparation. 
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Symmetry in the Generation of Trial Struetures 
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In the generation of trial structures by the systematic variation of the position and orientation of a 
molecule of known dimensions, the ranges to be scanned by the positional and orientational parameters 
depend on the symmetry of the molecule and on the space group. The set of transformations of the 
crystal axes that leave invariant the coordinates of equivalent positions for a given space group defines 
a corresponding derivative symmetry, conforming to one of thirty distinct 'Cheshire' groups. The direct 
product of this group with the molecular point group specifies the symmetry of the six-dimensional 
space of the trial-structure parameters. The asymmetric unit in this space is the region to be scanned by 
the several parameters. 

Trial-structure parameters defined 

A recurring problem is the determination of the struc- 
ture of a crystal whose asymmetric unit comprises a 
chemical entity, e.g. a molecule, of known or reason- 
ably conjectured internal dimensions. The initial task, 

* On leave from Department of Chemistry, Weizmann In- 
stitute of Science, Rehovoth, Israel. 

estimating the position and orientation of the molecule 
in the unit cell, may often be amenable to some kind 
of trial-and-error approach. Whatever the criterion 
chosen for judging the acceptability of a trial structure, 
some systematic procedure is needed for generating 
alternative models compatible with the available struc- 
tural information. We suppose here that this informa- 
tion comprises the cell dimensions, the space group, 
and the postulated molecular dimensions. Our formu- 
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Iation follows that outlined in a preliminary examina- 
tion of the problem (Hirshfeld & Rabinovich, 1966). 

Let us define the molecule by assigning to each atom 
a chemical label and three coordinates l ,m,n with re- 
spect to orthogonal molecular axes L ,M,N.  If we 
specify a second set of orthogonal axes A,B, C fixed 
in the crystal, we can define any molecular orientation 
by means of a matrix JR] that relates the two sets of 
atomic coordinates, i.e. 

(XYZ)=( lmn)  JR], 

where X, Y, Z are coordinates with respect to A, B, C. 
The matrix JR], expressing the relative orientations of 
the two sets of axes, may be written as a function of 
a set of Eulerian angles (0, N, 0 defined in Fig. 1. An 
auxiliary two-valued parameter e is needed to specify 
the chirality of the molecular axes; it takes the value 
+ 1 if the crystal and molecular axes are related by a 
proper rotation, - 1  if by an improper rotation. (For 
given values of ~0, g, 0, changing the sign of e corre- 
sponds to a reversal of the M axis, L and N remaining 
fixed.) The explicit form of [R(e, ~o, ~, 0)] is 

The answer evidently depends both on the symmetry 
of the molecule and on that of the crystal. We shall 
now consider these in turn. 

Molecular symmetry 

Consider, first, the effect of (non-crystallographic) mo- 
lecular symmetry. Let [S] be a matrix that relates the 
coordinates, with respect to the axes L, M, N, of sym- 
metry-related pairs of atoms in the molecule so that  
every atom, with coordinates l,m,n, is matched by an 
identical atom with coordinates Is, ms, ns, where 

(lsmsns)=(lmn) [S]. 

Application of this matrix to the coordinates of all the 
atoms in the molecule leaves the list of coordinates 
unchanged but for a permutation of the atomic 
sequence. If we subsequently apply any transformation 
matrix [R(e,~o,~,,O)] to the permuted coordinates we 
shall obtain the same set of coordinates X, Y,Z,  in 
permuted sequence, as if we had applied [R] to the 
original coordinate list. Hence the matrix [R] and the 

[cos tp cos g - s i n  ~0 sin ~, cos 0 
[R] = 1 -e (cos  ~0 sin ~, + sin ~0 cos ~, cos 0) 

[sin ~0 sin 0 

sin ~0 cos ~, + cos ~0 sin g cos 0 sin ~, sin 0 ] 
- e ( s in  ~0 sin ~ , - cos  ~0 cos ~, cos 0) e cos ~, sin 01 " 
- c o s  ~0 sin 0 cos 0 

Measuring (0, ~', 0 in revolutions, we find that the pos- 
sible values of these angles lie in the ranges 

0<(0<  1, 0 < ~ , <  1, 0<0<_½. 

To obtain fractional atomic coordinates x ,y , z  with 
respect to the unit-cell edges a, b, c, we require a further 
transformation, defined by a second matrix [A] that 
relates the orthogonal axes A,B, C to the crystal axes 
a,b,c. The complete expression is 

(xyz)=(lmn)  [R] [A]+(uvw) , (1) 

where u, v, w are the fractional coordinates of the mo- 
lecular origin in the unit cell. The form of [A] depends 
on the cell dimensions and on the way the axes A, B, C 
are chosen. It is defined by the equation 

with implied summation over i, where we have used 
the notation ai ( i=  1,2,3) for a,b,e, A~ ( k =  1,2,3) for 
A, B, C. 

For  given cell dimensions and space group and given 
molecular dimensions, any possible structure may be 
defined by specification of the seven parameters 
e, ~0, ~,, 0, u, v, w. We now ask: what ranges must these 
parameters scan so as to generate all possible struc- 
tures? We can emphasize the analogy between this 
problem and the more familiar one of the demarcation 
of the limits of the asymmetric unit for a given space 
group by rephrasing our query in the form: what is 
the symmetry of the space defined by these seven par- 
ameters? 

matrix [Rs] = [S] [R] define indistinguishable molecular 
orientations and are entirely equivalent. Correspond- 
ingly, the sets of molecular parameters e,(0, ~ ,0  and 
es, ~s, V/s, Os satisfying the relation 

[R(es,(os, ~,'s, Os)]=[S] [R(e,~, ~,0)1 

C 

N 0 

eM ~ 

L 
B 

A 

Fig. 1. Definition of Eulerian angles ~, ~', 0 relating molecular 
axes L, M, N to reference axes A, B, C fixed in the unit cell. 
The A axis may be imagined either to project forward out 
of the paper (2= + 1) or to recede behind the paper (2= - 1). 
In either case the angles are: 

Measured In positive Range 
Angle from to sense about (revolutions) 

~0 A 2C x N 2C 0 to 1 
~, 2C x N L 2N 0 to 1 
0 C N C x N  0 to ½ 

where 2=[ABC]; i.e.+ 1 if A, B, C form a right-handed 
axial system, - 1 if left-handed. 
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are equivalent under the symmetry operation IS]. 
Values of es, ~0s, ~'s, 08 equivalent to the set e, ~0, ~, 0 are 
given in Table 1 for some commonly encountered mo- 
lecular symmetry operations. It is an awkward con- 
sequence of the unsymmetrical way in which the several 
axes enter into the definitions of the Eulerian angles 
that a simple interchange of axial labels can radically 
alter the expressions for equivalent parameter sets cor- 
responding to a given symmetry operation. Any axis 
of higher than twofold symmetry is conveniently taken 
to lie along N. If a molecule possesses more than one 
such axis, the expressions for es, ~0s, ~'s, 0s become far 
more complicated and, correspondingly, less useful. 

Table 1. Parameter  sets es, ~8, ~8, 08 corresponding, under 
various molecular s y m m e t r y  operations, to reference set 

e, ~o, ~,  0 

Letters in parentheses following Hermann-Mauguin symbols 
for point-group operations identify directions of symmetry axes 

or of normals to symmetry planes. 

]" -e ,  ½+q~, - ~ ,  ½-0 
2(L) e, 5+~P, ½-V, 5 - 0  
2(M) e, 5 + (o, - V, 5 - 0 
2(N) e, ~o, 5 + gt, 0 
m(L) - e ,  ~o, ½+ ~, 0 
m(M) - e ,  (o, q/, O 
re(N) - e ,  5+~o, ½ - ~ ,  5 - 0  
kJ(N)t e, ~o, ej[k + ~, 0 
kJ(N)t - e, 5 + ~o, - e j ]k-  ~u, 5 -  0 U odd) 

~f kS(N) is a rotation through co = 2rq/k radians about the N axis, 
the positive sense of rotation being taken so that the coordi- 
nates l, m, n are transformed to l cos co-m sin o9, l sin o9+ 
m cos o9, n; kS(N) is the same rotation combined, for j odd, 
with inversion in the molecular origin. A single k-fold rotation 
axis entails k - 1  distinct symmetry operations kS (j= 
1, 2 . . . .  k -  1). A k inversion axis entails, if k is odd, k opera- 
tions ks and k - 1  operations kS; if k is even, 5k operations 
ks and 5k -  1 operations M. 

For a molecule of given symmetry, suitably oriented 
with respect to the molecular axes L, M, N, we extract 
from Table 1 the appropriate parameter sets corre- 
sponding to the several point-group operations and so 
compile a list of parameter sets es,~Os, ~us, Os that are 
equivalent by virtue of the molecular symmetry. For 
example, with a molecule of symmetry 2/m, oriented 
with its twofold axis along L, the point-group opera- 
tions 1, 2(L), m(L) ,  and T correspond to the four equi- 
valent parameter sets: 

e, q~, ~, O; 
e, ½+~0, ½ -  ~,, ½ - 0 ;  

- e ,  ~o, ½+~ ,  O; 

- e ,  ½+¢0, - lu ,  ½ - 0 .  

The coordinates u,v,  w have been omitted from this 
discussion since we always choose the molecular origin 
so that they are not affected by any of the point-group 
operations of the molecule. 

Space-group symmetry 

We turn next to the effect of crystal symmetry. Sup- 
pose the lattice has been defined by specification of the 
cell dimensions a,b,c,o~,fl,?, and the space group by 
tabulation of the coordinates of equivalent positions 
in the unit cell. Given these crystallographic param- 
eters, the assignment of chemical labels and coordinates 
to the atoms in one asymmetric unit will completely 
determine the structure (except for possible enantio- 
morphism; see below). The converse, however, is not 
true; alternative sets of coordinates may describe the 
same structure. Such alternative sets of coordinates 
may be related by three types of transformation: 

(a) a shift of origin, consistent with the table of co- 
ordinates of equivalent positions; 

(b) reversal or interchange of unit-cell axes, con- 
sistent with the coordinates of equivalent positions and 
with the cell dimensions; 

(c) replacement of every atom by a symmetry-related 
atom. 

The admissible shifts of origin comprise arbitrary 
displacements along any polar axes as well as transla- 
tions by particular submultiples of the lattice vectors, 
depending on the space group. Thanks to the indeter- 
minacy in choice of origin, the position of the molecular 
centre may be arbitrarily restricted to a region that is 
invariably smaller than the full unit cell, i.e. the mo- 
lecular coordinates u~ never need to scan the entire 
range 0 < u~ < 1. Thus in space group P2 the coordi- 
nates of equivalent positions are generally referred to 
an origin on the diad axis. But they do not restrict the 
position of the origin along this axis and, furthermore, 
four diad axes pass through each unit cell, any one of 
which may contain the origin. We are thus free to 
specify our origin by arbitrarily restricting the molec- 
ular coordinates to the region 

0_<u<½, v=0, 0_<w<½. 

An example of (b) is the simultaneous reversal of 
the a and c axes of a monoclinic unit cell. This trans- 
formation, which changes the signs of all x and z co- 
ordinates, may equally be regarded as an example of 
(c), if the space group is, e.g., P2 ,  or of (a) and (c) 
combined, if it is P21. But in general (b) is more in- 
elusive than (c), i.e. the equivalences deducible from 
transformations of type (b) include all those deducible 
from (c) plus, frequently, others not permitted by (c). 
Thus, for all monoclinic space groups the pertinent (b) 
type transformations comprise all the operations of 
point group 2/m (reversal of b, or of a and e, or of 
all three), while (c) is restricted by the point group of 
the particular structure, which may be 2 or m or 2/m. 
Accordingly we may disregard (c) and derive all the 
relevant equivalences from a consideration of (a) and 
(b) transformations alone. 

Our problem, then, is to catalogue, for a given space 
group, the translations and rotations of the crystal axes 
that leave invariant the cell dimensions and the coot- 

A C 24A - 4* 
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dinates of  equivalent positions. These two items of 
input  data together specify the magnitudes and direc- 
tions of all the lattice vectors and the nature and loca- 
tion, within the unit  cell, of all the symmetry elements. 
The set of  axial t ransformations under  which these 
symmetry specifications are invariant  defines a special 
kind of derivative symmetry for the space group. More 
general than the symmetry of the crystal structure itself, 
it is the symmetry the structure would acquire if all 
its atoms were removed and only its symmetry elements 
left behind, like the grin of the vanishing Cheshire cat. 
The full symmetry of the space group is, of course, 
always included in this derivative symmetry,  since the 
space-group operations themselves must leave all sym- 
metry elements invar iant ;  thus the space group is ne- 
cessarily a subgroup of its derivative symmetry group, 
which we may  call its 'Cheshire '  group. This conclusion 
justifies our previous generalization that every (c) type 

t ransformation,  which represents a space-group opera- 
tion, is matched by an equivalent (b) type t ransforma- 
tion, which is an operation of the Cheshire group. 

T h e  C h e s h i r e - g r o u p s  

With a small effort we can derive the Cheshire group 
for any space group. The results appear  in Table 2, 
where the 230 space groups are classified according to 
their corresponding Cheshire groups. Each Cheshire 
group is characterized by its H e r m a n n - M a u g u i n  sym- 
bol, referred to its own unit cell, and by the axes of  
this cell defined in terms of the space-group axes a,b, c. 

Those Cheshire groups that derive from polar space 
groups have unit cells with one or more axes of van- 
ishing length. These define degenerate 'lattices', to 
which we have assigned the symbol Z n, where the 
integer n denotes the number  of vanishing axes. These 

Table 2. The 230 space groups classified by corresponding Cheshire groups 

a, b, e are the axes of the conventional crystallographic unit cell, hexagonal axes in the trigonal and hexagonal systems; E is an 
infinitesimal quantity, used in defining vanishing axes of the Cheshire-group unit celt. 

Cheshire group and unit cell 
PT {a x {b x {e 
Z3"i" ea x eb x ee 
P2/m ½a x ½b x ½e 
Z12/m ½a x eb x ½e 
Z22/m tax  ½b x ee 
Pmmm ½a x ½b x ½c 

Pnnn ½a x ½b x ½e 
Immm ½a x ½b x ½e 
Z1 mmm ½a x ½b x te 

Zlban ½a x ½b x ee 
P4222 ½(a- b) x ½(a + b) x ½e 
Z1422 ½(a- b) x ½(a + b) x te 
P4/mmm ½(a- b) x ½(a + b) x ]re 

P4z/nnm ½(a- b) x ½(a + b) x ½e 
I4/mmm ½(a - b) x ½(a + b) x ½e 
Z14/mmm ½(a- b) x ½(a+ b) x ee 
Z14/nbm ½(a- b) x ½(a + b) x ee 
R~m - b  x a + b  x ½e 
Z:~lm ½(a-b )  x ½(a+ 2b) x tc 
P6222 a x b x ½e 

½(a - b) x ½(a + 2b) x ½e 
P6422 a x b x ½e 

~(a-- b) x ½(a + 2b) x ½e 
Z:622 a x b x 8e 

~ ( a - b )  x ½(a + 2b) x ee 
P6/mmm a x b x ½e 

½(a-b )  x ½(a + 2b) x ½e 
Z16/mmm a x b x ee 

½(a - b) x ~(a + 2b) x te 
Ia3 a x b x e  
14:32 a x b x e  
Pm3m ½a x ½b x ½e 
Pn3m ½a x ½b x ½e 
Im3m a x b x c 

½a x ½b x ½e 
la3d a x b x e 

Corresponding space groups 
PT 
P1 
P2/m, P21/m, C2/m, P2/c, P21/c, C2/c 
P2, P2:, C2 
Pm, Pc, Cm, Cc 
P222, P222t, P2t2t2, P212:2:, C222h C222, I222, 12:2121, Pmmm, Pnnn, Pccm, Pban, 
Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma, 
Cmcm, Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm, Immm, Ibam, Ibca, Imma 
Fddd 
F222 
Pmm2, Pmc2b Pcc2, Pma2, Pca2t, Pnc2, Pmn2h Pba2, Pna2b Pnn2, Cmm2, Cmc2:, 
Ccc2, Amm2, Abm2, Ama2, Aba2, Fmm2, Imm2, Iba2, Ima2 
Fdd2 
P4:22, P412:2, P4322, P432t2 
P4h P43 
pT~, P4/m, P42/m, P4/n, P42/n, 14/m, P422, P4212, P4222, P422:2, I422, PT~2m, p7~2c, 
PT~2tm, PTI21c, PT~m2, p7~c2, PT~b2, P2[n2, I7~2m, P4/mmm, P4/mcc, P4/nbm, P4/nnc, 
P4/mbm, P4/mnc, P4/nmm, P4/ncc, P42/mmc, P42/mcm, P42/nbc, P42/nnm, P42/mbc, 
P42/mnm, P42/nmc, P42/ncm, 14/mmm, I4/mcrn 
141/a,/4122, I7~2d, I41/amd, I4t/acd 
17~, I7~m2, 17~c2 
P4, P42, 14, P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc, I4mm, 14cm 
I4:, I41md, I41cd 
R], R32, R~m, R]c 
R3, R3m, R3c 
P3121, P6t22, P6422 
P3112 
P3221, P6522, P6222 
P3212 
P61, P65, P62, P64 
P3:, P32 
P~, P321, P~lm, P]lc, P]ml, P]cl, P6/m, P63/m, P622, P6322, Pg2m, P'~2c, P6/mmm, 
P6/mcc, P63/mcm, P63/mmc 
P312, Pg, P-~m2, P~c2 
P31m, P31c, P6, P63, P6mm, P6cc, P63cm, P63mc 
P3, P3ml, P3cl 
Pa3 
P4332, P4132 
Fm3, F432, Fm3m, Fm3c 
Fd3, F4132, Fd3m, Fd3c 
P23, I23, Pm3, Pn3, Im3, P432, P4232, 1432, PT[3m, I7~3m, P43n, Pm3m, Pn3n, 
Pm3n, Pn3m, Im3m 
F23, FT~3m, F~3c 
P213, 1213, Ia3, 14132, I~3d, la3d 
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axes, though having no length, do have direction and 
are indicated in Table 2 with the aid of the infinitesimal 
e. The Z ~ lattice consists of an array, primitive in every 
case, of parallel lines, the Z 2 lattice of a set of parallel 
planes, and the Z 3 lattice of a three-dimensional con- 
tinuum. In all we find there are 30 distinct Cheshire 
groups; of these 20 are identical with ordinary space 
groups and 10 are continuous groups with Z-type lat- 
tices. 

To make use of Table 2 we first locate, in the column 
headed 'Space groups', the particular space group with 
which we are concerned. To the left of this entry we 
then find the corresponding Cheshire group, with its 
unit cell. Our next step is to draw up a table of coor- 
dinates of equivalent positions for the Cheshire group, 
most conveniently by referring to International Tables 
for X-ray Crystallography (1952), and transform these 
to the original unit-cell axes. In doing so we must take 
heed to choose a consistent origin for space group and 
Cheshire group so that the symmetry elements common 
to both groups are properly coincident when the two 
unit cells are superimposed with matching origins. 
The transformed coordinates of equivalent positions 
xt,yt, zt then define, for the given space group, all pos- 
sible alternative ways of assigning atomic coordinates 
to the same structure. 

As an example of the procedure, consider the space 
group I4x22. Table 2 assigns to this space group the 
Cheshire group P4z/nnrn with a unit cell ½ ( a - b ) x  
½(a + b)x ½c. We can write the axes of this unit cell as 
M~laj, thus defining the transformation matrix 

I! i] M =  ½ . 
0 

We suppose our origin has been chosen at the point 
222 so that the equivalent positions for I4a22 are (Inter- 
national Tables): 

(o,o,o; ½,½,½)+ 
x,y,z;  .2,y,z; ~ ,½+Y,¼-z;  x , ½ - Y , ¼ - z ;  
y ,x ,z ;  y ,x , z ;  fi ,½+x,¼+z; y ,½--x ,¼+z.  

The corresponding origin in P4z/nnm must then be at 
one of the points 222 or :g2m (which is a supergroup 
of 222). The latter alternative must be chosen so that 
the 4x axis of 14122, at 1 1 :r,::,z, may coincide with an 
equivalent symmetry element (in the guise of a 4z axis 
at 0,½,z) of P42/nnm (Fig. 2). With this choice of origin, 
the equivalent positions of P4z/nnm may be written" 

- - I  - - !  I .  
x' ,y ' ,z ';  x ,y ,z , ½+x' ,½+Y' ,½-z '"  ½-x ' ,½-Y ' ,½- - z '  
- I  I - I .  t x , y  ,z , x ' ,y ' ,U; ½ - x , k + Y ' , ½ + z ' ;  ½+x' ,½-Y ' ,½+z '  

~', x', ~' ; . . . . . .  y ,x  , z ,  ½-Y' ,½+x' ,½+z' ;  ½+Y' ,½-x ' ,½+z '  
t l I .  - t  - !  I .  y ,x  ,z , y ,x  ,z , ½+Y ' ,½+x ' , k - z ' ;  ½ - Y ' , ½ - x ' , ½ - z '  

The use of primes serves to remind us that these co- 
ordinates are referred to the axes of the Cheshire-group 
unit cell. To transform them to the space-group cell 

axes a,b, e, we regard each coordinate set in the above 
list as a row vector and postmultiply by the matrix [M]. 
We thus obtain: 

"x' + . . . . . . . .  t Y ),~tY - x  ),½z, 
- ½ ( x '  + y ' ) , l  . . . .  • , .  2ix - Y  ), 2 z , 

x '+  ' ' 3+½( y ),½(y - x ' ) , ¼ - ½ z ' ,  
½-½(x' + y') ,½(x'-y') ,¼ -zzz ", 

etc. The form of the first coordinate set in this list 
suggests the obvious substitution: 

x=½(x'+y'), y=½(y'-x'), z=½z', 
which leads to the transformed coordinate list" 

x,y ,z;  )~,y,z; ½+x,Y ,¼-z ;  ½ - x , Y , ¼ - z ;  
y ,x , z ;  y ,x , z ;  ½+y ,x , k+z ;  ½ - y , 2 , ¼ + z  ; 
)7,x,5; y,g,Y.; ½-y , x ,¼+z ;  ½+y,2 ,¼+z ;  
x,y,z;  J:,y,z; ½ + x , Y , k - z ;  ½ - x , Y , ¼ - z .  

This list is incomplete, however, in that it comprises 
the equivalent coordinate sets corresponding to only 
one unit cell of the Cheshire group, i.e. to one quarter 
of the crystallographic unit cell. To indicate explicitly 
the presence in the full unit cell of four Cheshire-group 
lattice points, we add their coordinates at the head of 
the list, which now becomes: 

1 1 (o,o,o; 3,3,0; 0,0,3; ~,½,~)+ 
x,y ,z;  ~,y,z; ½+x ,y ,¼- z ;  ½ - x , Y , ¼ - z ;  
y ,x ,z ;  y ,x ,z ;  ½+y ,x , k+z ;  ½ - y , 2 , ¼ + z ;  
.~,x,5; y,g,~,; -~ a • 2 -y , x , z~+z ,  ½+y,)?,¼+z,  
x,f?,z; 2,y,z;  ½+x,Y,¼-z;  ½ - x , y , ¼ - z .  

This is the complete list of equivalent coordinate sets 
xt,yt, zt for the space group I4122. It specifies 64 alter- 
native ways of assigning atomic coordinates to any 
structure belonging to this space group. We note that 
the list includes, as it must, the 16 equivalent positions 
of I4122 tabulated above. 

We can systematize the illustrated procedure, for 
example to adapt it to computer manipulation, by 
writing the coordinates xt, yt, zt that are equivalent, 
under a given Cheshire-group operation, to the refer- 
ence coordinates x ,y , z  in the form 

(xt ytzt) = (xyz) [ T] + (ptqtrt) . 

The full list of matrices [T] and vectors (ptqtrt) defines 
the particular Cheshire group. From International 
Tables we normally obtain, taking care about choice 
of origin, the corresponding quantities [T'] and 
(p~q~r~) referred to the axes M~jaj of the Cheshire- 
group unit cell. Transformation to the unit-cell axes 
aj is readily effected by means of the relations: 

T = [ M  -1] [T'] [M],  

(ptqtrt)=(p~q~r~) [M].  

In the ease of a polar space group, we disregard the 
degeneracy of the Cheshire-group lattice and derive 
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the equivalent coordinate sets as though for the cor- 
responding non-degenerate lattice. Thus, for the 
Cheshire group ZX2/m we use the equivalent positions 
of P2/m and transform with the aid of the matrix 

[ °il [M] = e . 
0 

The fact that in the limit, as e approaches zero, the 
matrix [M] becomes singular, causes no embarrass- 
ment. 

Several properties of Cheshire groups, though al- 
most trivial, deserve explicit mention. First, the opera- 
tions of the Cheshire group, unlike those of the cor- 
responding space group, are not applicable to the co- 
ordinates of individual atoms but must transform the 
coordinates of all atoms simultaneously. While we may 
have several alternative choices of unit-cell axes, we 
must be consistent about referring all our atoms to 
the same axes. 

Second, since the unit cell of the Cheshire group is 
usually smaller than that of its parent space group, 
the supergroup--subgroup relation between them may 

not always be instantly apparent. In fact it is readily 
enough verified, though possibly unfamiliar, that, for 
example, the space group P21212x with unit cell a x b x c 
is indeed a subgroup of its Cheshire group Pmmm with 
unit cell ½a x ½b x ½c. 

Third, among the transformations that may occur 
in the several Cheshire groups, we have allowed im- 
proper rotations, which convert a right-handed into a 
left-handed coordinate system. Thus we are permitting 
our crystal axial system to have either chirality, i.e. a 
given list of atomic coordinates may describe either of 
two enantiomorphous structures. Such a convention 
is appropriate to our present purpose only because 
enantiomorphous structures are, in fact, hardly ever 
distinguishable in the trial-structure stage of a crystal- 
lographic study. 

An alternative point of view, less offensive to purists, 
might insist on right-handed crystal axes but regard 
an enantiomorphous pair of trial structures as con- 
stituting a single model. The Cheshire-group operation 
(permitted for all but the eleven enantiomorphous 
pairs of space groups) that changes the signs of all 
x,y,z coordinates would then be interpreted, not as a 
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reversal of the crystal axes, but as an interchange of 
the two structures comprising the same model. This 
interpretation would alter none of our results, except 
to simplify the caption to Fig. 1 by eliminating the 
parameter 2, but it would logically complicate the 
definition of a Cheshire group, forcing us to view its 
symmetry operations as hybrids of (proper) axial rota- 
tions combined with transformations of the trial struc- 
ture. 

In this connexion, it is important to recognize that 
the application of Cheshire-group symmetry to the 
generation of trial structures is legitimate only if the 
criterion by which these trial structures are to be judged 
itself conforms to that symmetry. If, for example, our 

are referred, i.e. we must specify the explicit form of 
the matrix [A] appearing in equation (1). The conven- 
tion we shall now adopt is to define A, B, C as orthog- 
onal unit axes oriented with A[ [a, Bllb*, C .  e > 0. With 
this definition the axes A, B, C are parallel to the crystal 
axes a, b, e in most cases where these are fixed by sym- 
metry. The trigonal and hexagonal systems (for both 
of which we take a, b, e to be hexagonal axes) are excep- 
tional, with B lying 30 ° away from b. Note, too, that 
if a,b,e form a left-handed system, so do A,B,C, the 
expression for b* = e  x a/[abe] having then a negative 
denominator. 

We can now write the matrix [A], and its inverse 
[A-q, explicitly as 

[1/a 0 0 ] 
[A]=/(cos  c~ cos f l - c o s  7)/va sin fl sin fl/vb (cos fl cos ~ - c o s  oO/vc sin flJ , 

[ - c o t f l / a  0 1/c sin fl 

criterion is a comparison of observed and calculated 
structure amplitudes and the observed amplitudes are 
unequal for pairs of reflexions with indices hkl and h/~l, 
then the situation is not symmetric under a reversal 
of all three crystal axes and the equivalences we have 
derived are no longer appropriate. We may restore the 
assumed symmetry either by averaging the amplitudes 
of all pairs of inversion-related reflexions or, more 
laboriously, by testing each trial structure twice with 
hkl and h£i reflexions interchanged. A less trivial situa- 
tion arises with those space groups for which the dif- 
fraction symmetry, even in the absence of anomalous 
dispersion, is lower than the point-group symmetry of 
the corresponding Cheshire group. For example, the 
tetragonal space groups P4, P42, and 14 all correspond 
to the Cheshire group Za4/mmm although their dif- 
fraction symmetry is only 4/m. If structure-factor com- 
parisons were used to test trial structures in any of 
these space groups, the full Cheshire-group symmetry 
would not be preserved unless the test of each model 
allowed for the possible interchange of reflexions hkl 
and hkl. We have nevertheless preferred to base our 
general procedure on the full Cheshire-group symme- 
try, rather than on the diffraction symmetry, for two 
main reasons. First, even if the final comparison of 
structure amplitudes must be performed twice (or more 
times) for each model, this is a far more economical 
procedure than calculating structure factors indepen- 
dently for twice as many (or more) models. Second, 
for other common ways of testing trial structures, e.g. 
by estimating intermolecular packing energies, the 
Cheshire-group symmetry is entirely appropriate. 

Equivalent molecular parameters 

Having derived the Cheshire-group equivalences for a 
particular space group, we must next express these 
equivalences in terms of the molecular parameters 
e ~p V 0 u v w. Before we can do so we must define 
the reference axes A, B, C to which the Eulerian angles 

[! 0 0 ] 
[A-q=  cos ? vb/sin fl b(cos c~-cos fl cos ?)/sin fl , 

cos fl 0 c sin fl 

where 

v=l[abc]l/abc= 
(1 - cos2~- cos2fl- cos2y + 2 cos ~ cos fl cos ?)~. 

To proceed, let us suppose that the coordinate set 
xt,yt, zt, related to the set x , y , z  by the Cheshire-group 
transformation 

(xt ytzt) = (xyz) [T] + (ptqtrt) , (2) 

corresponds to the set of molecular parameters 
et,~ot, vt,  Ot, ut, vt, wt, i.e. that it is related to them by 
the analog of equation (1): 

(xtytzt)=(lmn) [R(et,~0t, Vt,0t)] [A]+(utvtwt).  (3) 

Since this relation must hold for any l, m, n, we obtain, 
on substituting equations (1) and (3) into equation (2): 

and 
[R(et,~ot, v~,Ot)] [A]=[R(e,q~,v,O)] [A] [T] 

(utvtwt) = (uvw) [ T] + (ptqtrt) . 

Of these two equations, the second has the trivial 
significance that the coordinates of the molecular ori- 
gin transform under a Cheshire-group operation just 
as those of any other point. But the first provides the 
more important relation 

[R(et, qgt, g/t, Ot)]=[R(e,~,g/,O)] [A] [T] [A-a], 

from which we can deduce, by simple if occasionally 
tedious algebra, the form of the parameters et, q~t, Vt, 0~ 
for any Cheshire-group operation whose transforma- 
tion matrix [T] is given. We may often avoid much 
of the tedium by simplifying the matrices [A] and [A-q 
in accordance with the lattice symmetry appropriate 
to the particular crystal system; after this simplification 
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it frequently happens that [A] commutes with [T] and 
hence 

[R(ee,~ae, ~,ue, Oe)]=[R(e,~a, v ,O)]  [T]. 

The rules just presented permit us to construct com- 
plete tables of equivalent molecular parameters for all 
the Cheshire groups. Since these tables depend on the 
choice of origin and on the definition of the axes 
A, B, C, they probably do not merit listing here in full. 
Instead we tabulate (as we did, in Table 1, for the mo- 
lecular symmetry operations) the equivalent molecular 
parameters corresponding to the most common indi- 
vidual Cheshire-group transformations. With the axes 
A,B, C chosen as above and with the Eulerian angles 
defined as in Fig. 1, the symmetry operations occurring 
in the majority of Cheshire groups lead to linear trans- 
formations of the Eulerian angles, i.e. the transformed 
angles ~oe, We, Oe are found to be linear functions of the 
untransformed angles ~0, ~U, 0. For these operations the 
explicit expressions for the transformed molecular par- 
ameters are given in Table 3. The omitted operations, 
for which the transformations of the Eulerian angles 
are non-linear (in fact non-algebraic), are all confined 
to the cubic space groups, to which the procedures now 
to be outlined are not readily applicable. An example 
will indicate how Table 3 can aid in the preparation 
of the full list of equivalent parameter sets for any non- 
cubic space group. 

Table 3. Cheshire-group equivalences  f o r  s y m m e t r y  
operat ions  occurring in non-cubic  crys ta l  s y s t e m s  

Each row gives the set of molecular parameters et, (at, ~ ,  Or, 
ut, vt, wt related by the indicated Cheshire-group symmetry 
operation to the reference set e, ~p, gt, 0, u, v, w. The positive 
sense of rotation about [001] is taken as that of increasing ~0; 
rotation through an angle co transforms the coordinates of a 
point from X, Y, Z to Xcos co- Ysin co, Xsinco+ Ycos co, Z. 

T ~ e~ 

21100] e, 
21010] e, 
21001] e, 
21110] e, 
211101 e, 
m(100) - e, 
m(010) - e, 
m(001) - e, 
m(110) - e ,  
m(1] '0)  - e, 
31001] e, 
3-a[001l  e, 
31001] - e, 
~g-x[001] -e ,  
41001] e, 
4-~[001] e, 
;~[001] - e, 
2I-1[001] -e,  
610011 e, 
6-11001] e, 
~[001] -- e, 
~-1[001] -- e, 

½+~o, -~ , ,  ½ - 0 ,  a, ~, 
½-q,, ½+ ~,, ½ - o ,  u, ~, 
-~o, ½+ v/, ½-o ,  a, v, ¢, 
½+q~, ~, o, a, f, w 
½+ ~,-~,, ½+ ~,, ½-0 ,  v, u, 
~,-~a, ½+~,  ½-0 ,  ~, a, ¢, 
- ~ o ,  ½ - ~ ,  O, ~ ,  v ,  w 

½-q,, ½-~t ,  O, u, ~, w 
~o, -¢ t ,  ½-O, u, v, 
~,-q,, ½-q/ ,  O, ~, ~, w 
½ + ~,-~o, ½-qt ,  O, v, u, w 
½+q~, gt, O, ~, u - v ,  w 
{ +  ~P, V, 0, v - - u ,  a, w 
~+q~, - -~ ,  ½--0, V, V--it, fO 
{+q~, - ~ ,  ½-0 ,  u - v ,  u, if, 
¼+ q~, q~, O, ~, u, w 
¼+ ~o, ~,, O, v, ft, w 
k+~o, -~ , ,  ½ - 0 ,  v, a, ¢, 
¼+~o, -~ t ,  ½-0 ,  f, u, 
~; + ~o, ~t, O, u - v ,  u, w 
{+ ~o, ~, 0, v, v-u, w 
~- + (o, - q/, ½- O, v -  u, a, if' 
~+~, -~,, ½-0, ~, u-v, 

Consider again the space group 14122, for which we 
have already derived the 64 equivalent sets of fractional 
coordinates xe,ye, ze. To these correspond 16 distinct 
[T] matrices, each of which is represented by one of 

the rows of Table 3. We can select the pertinent rows 
either by noting the forms of the expressions for xt ,  ye, zt  
and matching these (disregarding the constants pc, qe, re) 
against the expressions for us, re, we in the table or by 
identifying the Cheshire-group symmetry operations 
(or their point-group analogs) and locating their de- 
scriptions in column 1 of the table. Starting, for ex- 
ample, with the coordinate set ~,p,z in our list of 
Cheshire-group equivalents for 14122, we recognize this 
as arising from a diad axis along e and matching row 
4 in Table 3, where we find the parameter set 

e, ½+~0, ~u, 0, fi, ~, w .  

Similarly, the coordinate set ½ +y,  x, ¼ + z further along 
in our list corresponds (if we disregard the translation 
components) to a reflexion plane parallel to ( l i0) and 
to the parameters in row 11 of the table: 

- e ,  ½+ ~,-~a, ½ - ~ u ,  O, v, u, w . 

Substituting ? = 1, as required by the tetragonal lattice, 
and adding the translation components pt,  qt, re, we 
obtain the parameter set 

- e ,  k - q g ,  ½ - v ,  O, ½ + v ,  u, ¼ + w .  

Proceeding in this way we eventually derive the full 
list of equivalent parameter sets: 

e, 

e, 

- -  e ,  

e ,  

e, 

e, 

- -  e ,  

- -  e ,  

- -  e ,  

- -  e ,  

e, 

e, 

- -  e ,  

- -  e ,  

e, 

e, 

, , , ( 0 , 0 , 0 ;  ½,½,0; 0,0,½; ½,½,3)+ 
9, V, 0, u, v, w; 
½+~0, ~,, 0, ~, ~, w; 

~o, -~,, ½-0, ½+u, v, k - w ;  
½+~o, -~,, ½-o, ½-u, ~, ¼-w; 
¼-~o, ½+ ~,, ½-O, v, u, ¢,; 
¼-~o, ½+ ~,, ½-O, v, u, w; 
¼-~o, ½-~,, o, ½+v, u, k+w; 
¼-~o, ~-~,,  o, ½-v,r~, k+w; 
¼+~o, -~u, k - o ,  ~, u, rV; 
k+~o, -~,, ½-O, v, ~, rv; 
¼+~o, ~,, o, ½-v, u, k+w; 
¼+~o, ~u, o, ½+v,r~, ¼+w; 
½-~o, ½-~,, o, u, ~, w; 
-~o, ½ - g / ,  O, ft, v, w ; 

½-~o, ½+~,, ½-o, ~+u, ~, ¼-w; 
-~o, ½+~/, ½-o, ½-u, v, k - w .  

The translations indicated at the top of the list are, 
of course, to be added to the coordinates ut, vt, we; they 
do not affect the other parameters et, qgt, ~ t ,  Or. 

C o m b i n i n g  m o l e c u l a r  and c r y s t a l l o g r a p h i c  s y m m e t r y  

Having seen how to derive separately the equivalent 
l~arameter sets arising from the molecular and from 
the crystallographic symmetry, we are ready to com- 
bine the two. This may be accomplished by a straight- 
forward substitution of one set of equivalents into the 
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other. Two examples may serve to illustrate the general 
procedure. 

Consider first a molecule of symmetry 2/m occupying 
a general position in the space group P21/c. If we take 
the molecular origin at the inversion centre and L 
along the twofold symmetry axis of the molecule, 
we have (see above) the following parameter sets 
es, q~s, ~s, Os related by the molecular symmetry: 

(a) e, ~o, 9,, O; 
(b) e, ½+~, ½ -  ~', ½ - 0 ;  
(c) - e ,  ~0, ½+ 9,, 0; 
(d) - e ,  ½+~o, -g t ,  ½ - 0 .  

The Cheshire group, according to Table 2, is P2/m 
with unit cell ½a × ½b × ½e. With the aid of Table 3 the 
equivalent parameter sets et, (at, 9,t, Or, ut, vt, wt are read- 
ily found to be: 

(1) e, 9, 9,, 0, u, v, w; 
(2) - e, ½ + 9, - V, ½ -  0, u, v, w; (line 1 of Table 3) 
(3) e, - ~0, ½ + 9,, ½ -  0, ~, v, ~; (line 3) 
(4) - e ,  ½-~p, ½-9, ,  0, u, ~, w. (line 8) 

If we had followed strictly the procedure set out above 
for the space group I4122, we should have tabulated 
explicitly, at the top of this list, the eight Cheshire- 
group translations per crystallographic unit cell. It is 
simpler, however, in the present instance, merely to 
note the fact that the coordinates u,v ,w may be re- 
stricted, in accordance with the periodicity of the 
Cheshire group, to the ranges 

O<_u<½,0<_v<½, O<_w<½. 

We now form the direct product of the two symme- 
try groups by substituting, in turn, each of the parame- 
ter sets es, ~0s, 9,s, 0s of the first group for the variables 
e, ~p, 9,, 0 appearing in the expressions et, ~ot, ~ut, Ot of the 
second. In this way we obtain the complete list of equi- 
valent parameter sets est, ~ost, g/st, Ost, ut, vt, wt as follows: 

(al) e, 
(a2) - e ,  
(a3) e, 
(a4) - e ,  
(bl) e, 
(b2) - e ,  
(b3) e, 
(b4) - e ,  
(cl) - e ,  
(c2) e, 
(c3) - e ,  
(c4) e, 
(dl) - e ,  
(d2) e, 
(d3) - e ,  
(d4) e, 

cp, 9,,/9, u, v, w; 
½+~, -9 , ,  ½--0, u, v, w; 
- ~ ,  1+9", ½-0 ,  fi, v, ~; 

½-~o, ½-9 , ,  O, u, ~, w; 

½+g,, k - 9 , ,  ½-O, u, v, w; 
~o, ½ + 9,, O, u, v, w; 

½-~o, - 9 , ,  O, ft, v, rV ; 

- fo,  9,, ½ - 0 ,  u, ~, w; 
~o, ½+9,, O, u, v, w; 
½+~o, ½-9, ,  ½-O, u, v, w; 

-~o, 9,, ½ - 0 ,  ~, v, rv; 
½ - ~ ,  - 9 , ,  O, u, ~, w; 
½+~, - 9 , ,  ½-O, u, v, w; 

~o, 9,, O, u, v, w; 
½-~,, ½-9, ,  o, ~, v, rV ; 

- 9 ,  ½+ 9,, ½-O, u, ~, w . 

The letter and the numeral preceding each parameter 
set identify, respectively, the molecular and the crystal- 
lographic equivalences via which it has been derived. 
The last three columns indicate a systematic method 
of selecting, by a process of successive restriction, a 
suitable scanning range in the space of the seven mo- 
lecular parameters. Consider these parameters in turn, 
from left to right. If we fix the parameter e at the value 
+ 1, we effectively restrict our attention to eight of the 
sixteen parameter sets listed, i.e. to those checked in 
the column headed 'e = + 1'. For the second parameter 
~o there remain the four alternative expressions 
~0,-cp,½+cp,)-~. By selecting the range 0<~0<¼ we 
discard three of these, leaving the parameter sets (al) 
and (d2). These have identical expressions for 9" and 
for 0 so we pass over these two parameters and choose 
finally 0 < u < ¼, remembering that the Cheshire-group 
periodicity makes the values fi and ½ - u  equivalent. 
The parameter set (al) is now the sole survivor out 
of the original list of 16 equivalent sets. The range to 
be scanned (the asymmetric unit in our multidimen- 
sional space) is: 

e = + l ,  
0_<~0 ___¼, 
0 < 9 , < 1 ,  
0_<0_<½, 
O_<u_<¼, 
O_<v <½, 
0_<w<½. 

This range, which is not, of course, the only one we 
might have selected (any more than the asymmetric 
unit of a crystal has uniquely defined boundaries) is 
complete in that any structure having the given cell 
dimensions, space group, and molecular dimensions 
can be represented by a set of parameter values lying 
within the indicated limits. 

e = + l  0<~o<¼ 0 < u < ¼  
4 4 ~t 

4 4 
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As a second example, consider a molecule of sym- 
metry 2 in space group Pca21. Taking L along the 
molecular diad axis, we have, for the equivalent par- 
ameter sets es, q~s, Vs, Os under the molecular symmetry: 

(a) e, ~a, V, 0; 
(b) e, ½+~0, ½-g/ ,  ½ - 0 .  

The Cheshire group, according to Table 2, is Z l m m m  
with unit cell ½a x ½b x ee. Accordingly, the equivalent 
parameter sets ee, (pc, Ve, Or, ut, vt, we are, with some as- 
sistance from Table 3: 

(1) e, ~o, V, 0, u, v, w; 
(2) - e ,  ½+~0,-g/ ,½-0, /~, /5 ,  r~; 
(3) e, ½-~o, ½+ V, ½ - O ,  u, ~, ff,; 
(4) e, -~0, ½+V, ½-0 ,  ~, v, ~; 
(5) e, ½+~0, ~, 0, ~, ~, w; 
(6) - e ,  -~o, ½-~,,  O, fi, v, w; 
(7) - e ,  ½-~o, ½ - V ,  O, u, ~J, w; 
(8) - e ,  ~0, -~g, ½-0 ,  u, v, ~ .  

(line 1) 
(line 2) 
(line 3) 
(line 4) 
(line 7) 
(line 8) 
(line 9) 

Again, we simply take note of the Cheshire-group 
periodicity by restricting the ranges of the coordinates 
u, v, w to the interval 

O~u<½,0~v<½, w=O. 

As before, we now substitute each of the molecular 
equivalents es, Cps, Vs, Os in turn into each of the Cheshire 
group equivalents ee, opt, Ve, Or, ut, re, we and so obtain 
the complete list of equivalent parameter sets 
es~, ~os~, ~/st, Ost, ut, re, we: 

e = + l ,  
o___~0_<¼, 

-¼_<~,_<¼, 
0_<0_<½, 
0 < u  <½,  
0_<_v < ½, 
w = 0 .  

In this example, because of the polar e axis, the space 
to be scanned is of five dimensions rather than six. 

While the manner in which we have chosen to re- 
strict the ranges of the several parameters is essentially 
an arbitrary one, there is often a computational advan- 
tage in restricting, as far as possible, the Eulerian angles 
rather than the coordinates of the molecular origin. 
This is because the generation and testing of each new 
molecular orientation usually entail several operations 
that can be omitted when a molecule of fixed orienta- 
tion is simply translated to a new position in the unit 
cell. 

Molecules in,special positions 
We have thus far considered situations where the mo- 
lecule occupies a general position of the space group, 
but the same procedure, with important simplifications, 
is readily applicable to molecules in special positions. 
The most obvious simplification is that the require- 
ments of the site symmetry immediately constrain the 
molecule in position and, often, in orientation so that 
several of the molecular parameters have only a limited 
choice of discrete values available to them. For exam- 
ple, site symmetry T fixes the molecular coordinates 

(al) e, ~0, V, 0, u, v, w; 
(a2) - e ,  ½+~0, - V ,  ½-0 ,  u, v, w; 
(a3) e, ½-~0, ½+ ~, ½-0 ,  u, ~, #;  
(a4) e, -~0, ½+V, ½-0 ,  fi, v, r~; 
(a5) e, ½+~, ~g, 0, ~, ~, w; 
(a6) - e ,  -~0, ½ - V ,  0, ~, v, w; 
(a7) - e ,  ½-~0, ½-~g, 0, u, t~, w; 
(aS) - e ,  ~o, - V ,  ½-0 ,  u, v, rV; 
(bl) e, ½+~0, ½ - V ,  ½ - 0 ,  u, v, w; 
(b2) - e ,  ~0, ½+ V, 0, u, v, w; 
(b3) e, -~0, - V ,  0, u, ~, ~; 
(b4) e, ½-~o, - V ,  0, ~, v, ~; 
(b5) e, ~0, ½ - V ,  ½-0 ,  ~, ~, w; 
(b6) - e ,  ½-~0, ~, ½-0 ,  ~, v, w; 
(b7) - e ,  -~o, V, ½-0 ,  u, ~, w; 
(b8) - e ,  ½+~0, ½+V, 0, u, v, ~ .  

e = + l  0<~0<¼ -¼<_gt_<¼ 

Working again from left to right, we restrict the ranges 
of the successive parameters, as indicated in the last 
three columns, to obtain the scanning range: 

u, v, w; site symmetry 2 fixes two of these coordinates 
as well as two of the Eulerian angles. Consequently 
the number of dimensions to be scanned is drastically 
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reduced. An incidental further simplification occurs in 
the procedure for deriving the equivalent parameter 
sets in that we can disregard those molecular point- 
group operations that are part of the crystallographic 
site symmetry. If, for example, a molecule of symmetry 
2/m is known to occupy a special position of site sym- 
metry T, we may, in constructing the table of equivalent 
parameter sets es, q~s, ~'s, Os, replace the true molecular 
point group by one of its subgroups 2 or m, leaving 
the inversion centre to be implied by the space-group 
symmetry in conjunction with the specification of the 
molecular coordinates. 

We can illustrate this matter by referring to the ex- 
ample, treated explicitly above, of a molecule of sym- 
metry 2/m in the space group P21/c. With the molecule 
in a general position, i.e. with four molecules per unit 
cell, we derived a list of sixteen equivalent parameter 
sets est, ~ost, ~st, Ost, ut, vt, w~ in the Cheshire-group unit 
cell of ½a × ½b x ½c. If we now substitute in that list 
the coordinate values u = v = w = O ,  appropriate to a 
structure with two molecules per unit cell in special 

positions of site symmetry T, the sixteen parameter sets 
reduce to eight distinct sets occurring twice over. And 
these are just the eight equivalent parameter sets we 
could have obtained if we had considered explicitly 
only the molecular symmetry operations 1 and 2 (or, 
alternatively, 1 and m) in tabulating the molecular equiv- 
alences. 

The author is grateful for several stimulating discus- 
sions with Dr D. Rabinovich, of the Weizmann Insti- 
tute of Science, out of which the present investigation 
evolved. 
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A New Interpretation of the Fourier Coefficients of Debye-Seherrer Lines 
from Small Distorted Crystals 
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Equations are derived which express the mean distortion and the particle size coefficient of small 
distorted crystals in the Fourier coefficients of broadened X-ray diffraction powder lines. To this end 
the distribution function ~(t,L) for the distortions L of the cells, which are at a distance t apart, is 
expanded into a Fourier series and it is assumed that ~(t, L)= 0 for ILl---d/2 (d is the interplanar spacing 
between the reflecting planes). The sums of infinite series of Fourier coefficients of all orders of a re- 
flexion appear in the equations. The problem of the incomplete evaluation caused by the limited number 
of orders which can be measured in practice is discussed. Finally, as it is assumed in this analysis that 
the distortion coefficient is a constant for all values of the reciprocal coordinate of the line profile, 
the small error introduced into the equations by this approximation is calculated. 

Introduction 

The method most widely used for determining particle 
size and strains in polycrystalline materials from X-ray 
diffraction line broadening is that of Warren & Aver- 
bach (1952). For small distorted crystals in which no 
stacking faults occur, they derived the equation 

logeA~e(t) = logeV(t ) - 27r2s~ (Lt2). 

In this equation t is a distance normal to the reflecting 
planes. A~e(t) represents the real part of the Fourier 

* Present address: Koninklijke/Shell Laboratorium, Bad- 
huisweg 3, Amsterdam, Netherlands. 

transform of the intensity profile of the nth order of 
reflexion, in(so), which has been corrected for continu- 
ous factors. V(t) has the following meaning: for a 
crystal of volume V, VV(t )  is the volume common to 
the crystal and its 'ghost '  shifted a distance t. Further, 
sn is the reciprocal-lattice point coordinate, and So is 
that with origin at the reciprocal lattice point. (Lt 2) 
equals ~o(t,L)LadL (and likewise (L~ )=~( t ,L )LdL) .  
Function ~o(t,L) is the normalized distribution func- 
tion for the distortion L at the distance t. Thus t + L  
is the distance between two cells in the distorted crystal, 
projected on the direction perpendicular to the reflect- 
ing planes. In the ideal crystal this distance is t. The 
mean values of L a and L depend on t and for ease of 


